Version 1.2

General Certificate of Education June 2010

Chemistry

CHEM5

Energetics, Redox and Inorganic Chemistry

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre

Set and published by the Assessment and Qualifications Alliance

Q	Part	Sub Part	Marking Guidance	Mark	Comments
1	(a)		$\mathrm{CaF}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{g})$	1	
1	(b)	(i)	Enthalpy change for formation of 1 mol of substance From its elements Reactants and products/all substances in their standard states	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow heat energy change, NOT energy Or normal states at $298 \mathrm{~K}, 1$ bar (100 kPa)
1	(b)	(ii)	$\mathrm{Ca}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})$	1	
1	(b)	(iii)	$\begin{aligned} & \Delta H_{f}\left(\mathrm{CaF}_{2}\right)=\Delta H_{\mathrm{a}}(\mathrm{Ca})+1 \mathrm{st} \mathrm{IE}(\mathrm{Ca})+2^{\text {nd }} \mathrm{IE}(\mathrm{Ca})+\mathrm{BE}\left(\mathrm{~F}_{2}\right)+2 \text { xEA }(\mathrm{F})- \\ & \Delta H_{\mathrm{L}}\left(\mathrm{CaF}_{2}\right) \\ & =193+590+1150+158+(2 \mathrm{x}-348)-2602 \\ & =-1207 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 1 1	Or labelled diagram Correct answer scores 3 -842 scores 2 (transfer error) -859 scores 1 only (using one E.A.) Units not required, wrong units lose 1 mark
1	(c)		Electrostatic attraction stronger/ionic bonding stronger/attraction between ions stronger/more energy to separate ions Because fluoride (ion) smaller than chloride	1 1	Molecular attraction /atoms/intermolecular forces CE=0 Do not allow F or fluorine
1	(d)	(i)	$\begin{aligned} & \Delta H=\Delta H_{\mathrm{L}}+\Sigma \Delta H_{\mathrm{hyd}}=2237-1650+(2 \mathrm{x}-364) \\ & =-141 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 1	Can be on cycle/diagram Correct answer scores 2 Units not required, wrong units lose 1 mark

1	(d)	(ii)	Decreases Reaction exothermic/ $\Delta \mathrm{H}$-ve (Equilibrium)shifts to left/backwards (as temperature rises)/ equilibrium opposes the change	1 1 1	If ans to (d)(i) positive allow increases If (d)(i) +ve allow endothermic/ $\Delta H+$ ve If (d) (i) +ve allow shifts to right/forwards / equilibrium opposes the change If no answer to (d) (i) assume -ve ΔH used If effect deduced incorrectly from any $\Delta H C E=0$ for these 3 marks
1	(e)		u.v. absorbed: electrons/they move to higher energy (levels)/ electrons excited visible light given out: electrons/they fall back down/move to lower energy (levels)		Must refer to absorbing u.v. NOT visible light or this must be implied.

Q Part Sub Part Marking Guidance Mark Comments 2 (a) Macromolecular 1 Or giant molecule Or giant covalent (also gains M 2$)$ Do not allow giant atomic Ionic/metallic $\mathrm{CE}=0$ for all 3 marks Do NOT allow if between molecules

2	(f)	(ii)	$\mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}$	1	Other equations with $\mathrm{Al}_{2} \mathrm{O}_{3}$ are possible e.g. $\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ & 2\left[\mathrm{Al}^{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}}\right. \end{aligned}$
2	(g)		SiO_{2} acidic/Lewis acid/electron pair acceptor $\mathrm{SiO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}$	1 1	Allow SiO_{2} not amphoteric Do NOT allow BL acid Other equations with SiO_{2} are possible e.g. $\begin{aligned} & \mathrm{SiO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{SiO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{SiO}_{2}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{6}{ }^{2-} \end{aligned}$

Q	Part	$\begin{array}{\|l} \hline \text { Sub } \\ \text { Part } \\ \hline \end{array}$	Marking Guidance	Mark	Comments
3	(a)		Same phase/state	1	
3	(b)		Because only exist in one oxidation state	1	Allow do not have variable oxidation states
3	(c)		$21^{-}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow \mathrm{I}_{2}+2 \mathrm{SO}_{4}{ }^{2-}$	1	Ignore state symbols Allow multiples
3	(d)		Both (ions)have a negative charge	1	Or both have the same charge Or (ions) repel each other Do not allow both molecules have the same charge (contradiction)
3	(e)		$\begin{aligned} & 2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \\ & 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \end{aligned}$ Positive and negative (ions)/oppositely charged (ions)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Equations can be in any order Mark independently
3	(f)		Equations 1 and 2 can occur in any order	1	Allow idea of Fe^{3+} converted to Fe^{2+} then Fe^{2+} converted back to Fe^{3+}

Q	Part	Sub Part	Marking Guidance	Mark	Comments
4	(a)		Partially filled/incomplete d sub-shell/orbital/shell	1	Ignore reference to forbitals Do not allow d block Do not allow half-filled d orbitals
4	(b)		Has ligand(s) linked by co-ordinate bonds	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow molecules/ions with lone pairs Allow dative/donation of lone pair
4	(c)		(Blue) light is absorbed (from incident white light) Due to electrons moving to higher levels / electrons excited Red light (that) remains (is transmitted) / light that remains (transmitted light) is the colour observed	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow d \rightarrow d transitions Allow red light reflected
4	(d)	(i)	Circle round any O^{-} Circle round either N	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	List principle
4	(d)	(ii)	$\mathrm{EDTA}^{4-}+\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow[\mathrm{CoEDTA}]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$	1	Allow missing square brackets Ignore state symbols
4	(d)	(iii)	Increase in entropy/ ΔS positive Because 2 mol (of particles/molecules/species/entities) form 7 mol	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Or increase in disorder Allow 'increase in number' as stated in words or as shown by any numbers deduced correctly from an incorrect equation Do not allow increase in ions/atoms

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& (e) \& (i) \& \begin{tabular}{l}
Co-ordinate/dative/dative covalent bond \\
Covalent bond
\end{tabular} \& 1

1 \& | Allow pair of electrons donated by nitrogen/ligand |
| :--- |
| Do not allow pair of electrons donated from Iron/Fe |
| Shared electron pair |

\hline 4 \& (e) \& (ii) \& Transport of oxygen/ O_{2} \& 1 \& | Allow any statement that implies oxygen carried (around the body) |
| :--- |
| Do not allow transport of carbon dioxide $\left(\mathrm{CO}_{2}\right)$. This also contradicts the mark (list principle) |

\hline 4 \& (e) \& (iii) \& | Because it bonds to the iron/haemoglobin |
| :--- |
| Displaces oxygen | \& 1

1 \& | Allow blocks site /CO has greater affinity for haemoglobin /carboxyhaemoglobin more stable than oxyhaemoglobin |
| :--- |
| Or prevents transport of oxygen QoL |

\hline
\end{tabular}

Q	Part	$\begin{aligned} & \hline \text { Sub } \\ & \text { Part } \end{aligned}$	Marking Guidance	Mark	Comments
5	(a)		W is $\mathrm{CuCl}_{4}{ }^{2-}$ Yellow-green/yellow/green $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CuCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O}$	1 1 1	Not necessary to indicate solution Do not allow precipitate/solid $\text { Allow }+4 \mathrm{HCl} \rightarrow 4 \mathrm{H}^{+}$
5	(b)		X is $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ Blue precipitate/solid $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}$		Allow $\mathrm{Cu}(\mathrm{OH})_{2} /$ copper hydroxide Ignore shades Allow any balanced equation/equations leading to this hydroxide or $\mathrm{Cu}(\mathrm{OH})_{2}$ But must use ammonia

5	(c)		Y is $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ Deep/dark/royal blue solution $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$	1 1 1	QoL Accept equation for formation from $\mathrm{Cu}(\mathrm{OH})_{2}$
5	(d)		Z is CuCO_{3} Green solid/precipitate $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow copper carbonate Allow blue-green precipitate
5	(e)	(i)	$\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{~s}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{Fe}^{2+}(\mathrm{aq})$ Blue Green	1 1	Allow hydrated ions State symbols not essential but penalise if wrong Do not allow description of solids Allow yellow/(red-)brown/orange

| 5 | (e) | (ii) | Any two correct points about copper extraction from two of these three
 categories:
 Any relevant mention of lower energy consumption
 Any relevant mention of benefits of less mining (of copper ore)
 Less release of CO_{2} (or CO) into the atmosphere | Max 2
 Do not allow reference to electricity
 alone or to temperature alone. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Allow avoids depletion of (copper ore) | | | | |
| resources | | | | |

Q	Part	Sub Part	Marking Guidance	Mark	Comments
6	(a)		$\begin{aligned} & \Delta H=\Sigma \Delta H_{f}(\text { products })-\Sigma \Delta H_{f}(\text { reactants }) \\ & =-201-242-(-394) \\ & =-49 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	$+49 \mathrm{~kJ} \mathrm{~mol}^{-1}=1$ mark units not required, wrong units lose 1 mark
6	(b)		$\begin{aligned} & \Delta S=\Sigma S(\text { products })-\Sigma S(\text { reactants }) \\ & =238+189-(214+3 \times 131) \\ & =-180 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$+180=1 \text { mark }$ units not required, wrong units lose 1 mark
6	(c)		$\Delta G=\Delta H-T \Delta S$ (ΔS is negative so) at high temp $-T \Delta S$ (is positive and) greater than $\Delta H /$ large So $\Delta G>0$ (Limiting condition $\Delta G=0$ so) $T=\Delta H / \Delta S$ $=272 \mathrm{~K}$ Reaction is too slow at this temperature/to speed up the reaction	1 1 1 1 1 1	If use G not ΔG penalise M1 but not M2 and M3 Do not award M2 or M3 if positive ΔS value used Independent mark unless positive ΔS value used Allow 297-298 if used given values. Do not award M5 if T -ve or if M4 should give T -ve

Q	Part	Sub Part	Marking Guidance	Mark	Comments
7	(a)		Hydrogen $/ \mathrm{H}_{2}$ gas/bubbles $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl} / \mathrm{H}^{+}$ At 298 K and 100 kPa Pt (electrode)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow 1 bar instead of 100 kPa Do not allow 1 atm
7	(b)		$\begin{aligned} & \mathrm{Li}^{+}+\mathrm{MnO}_{2}+\mathrm{e}^{-} \rightarrow \mathrm{LiMnO}_{2} \\ & -0.13(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Ignore state symbols
7	(c)		$\begin{aligned} & \mathrm{Fe}^{3+} \text { ions reduced to } \mathrm{Fe}^{2+} \\ & \text { Because } E\left(\mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)\right)>E\left(\mathrm{H}^{+} / \mathrm{H}_{2}\right) / E(\text { hydrogen }) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Can score from equation/scheme Allow emf $/ E_{\text {cell }}+\mathrm{ve} / 0.77 \mathrm{~V}$ Allow Fe^{3+} better oxidising agent than H^{+} Allow H_{2} better reducing agent than Fe^{2+} Only award this explanation mark if previous mark given

